py3dinterpolations.modelling.modeler.Modeler
- class py3dinterpolations.modelling.modeler.Modeler(griddata: GridData, grid3d: Grid3D, model_name: str = 'ordinary_kriging', model_params: dict = {})
Bases:
object
modeler class for 3d modelling
This class applies a model defined within the ModelWrapper class to a Grid3D instance
- Currently supports:
- Statistical:
Ordinary Kriging : ordinary_kriging (pykrige)
- Deterministic:
Inverse Distance Weighting : idw
- Parameters
- model
model object
- Type
object
- results
dictionary with interpolated and variance grids
- Type
dict
Examples
>>> # modeler >>> modeler = Modeler(griddata, grid3d) >>> # predict >>> interpolated = modeler.predict()
Methods
__init__
(griddata, grid3d[, model_name, ...])predict
(**kwargs)makes predictions considering all past preprocessing
Attributes
- predict(**kwargs) ndarray
makes predictions considering all past preprocessing
if normalization was applied, predict on normalized grid
if standardized data, reverse standardization
reshape from zxy to xyz (pykrige output)
- Parameters
grids_arrays (dict) – dictionary with x, y, z grids 1d np.ndarray
- Returns
interpolated grid
- Return type
interpolated (np.ndarray)