=============================================== Welcome to py3dinterpolations's documentation! =============================================== This is a python package to compute quick 3D interpolations of spatial data. Supports **deterministic and interpolation** methods: - *Ordinary 3D Kriging* : `pykrige `_ - *Inverse distance weighting (IDW)* Features **parameters estimation**: - GridSearchCV for Kriging : execute a exahustive search over specified parameter values for an estimator. See `scikit-learn `_ Supports **preprocessing** of data: - *Downsampling* - reduce the number of points by using statistical methods by blocks - *Normalization* of X,Y,Z coordinates reducing effect of magnitude of coordinates. - *Standardization* of signal - standard distribution of signal, reducing effect of magnitude of signal. **Visualizations** in 2D and 3D: - 2D with `matplotlib `_ - 3D with `plotly `_ .. toctree:: :maxdepth: 2 :caption: Examples examples/quickstart.ipynb examples/preprocessing.ipynb examples/estimator.ipynb .. toctree:: :maxdepth: 2 :caption: Models models/kriging.ipynb models/idw.ipynb Code reference ============== .. autosummary:: :toctree: _autosummary :template: custom-module-template.rst :caption: Code reference :recursive: py3dinterpolations Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`